Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Infectious disease

  • 126 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 12
  • 13
  • →
Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection
Jay Vornhagen, … , Elizabeth Nance, Lakshmi Rajagopal
Jay Vornhagen, … , Elizabeth Nance, Lakshmi Rajagopal
Published April 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97043.
View: Text | PDF

Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection

  • Text
  • PDF
Abstract

Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and β-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.

Authors

Jay Vornhagen, Blair Armistead, Verónica Santana-Ufret, Claire Gendrin, Sean Merillat, Michelle Coleman, Phoenicia Quach, Erica Boldenow, Varchita Alishetti, Christina Leonhard-Melief, Lisa Y. Ngo, Christopher Whidbey, Kelly S. Doran, Chad Curtis, Kristina M. Adams Waldorf, Elizabeth Nance, Lakshmi Rajagopal

×

Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry
John J. Miles, … , David A. Price, Andrew K. Sewell
John J. Miles, … , David A. Price, Andrew K. Sewell
Published March 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI91512.
View: Text | PDF

Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

  • Text
  • PDF
Abstract

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.

Authors

John J. Miles, Mai Ping Tan, Garry Dolton, Emily S.J. Edwards, Sarah A.E. Galloway, Bruno Laugel, Mathew Clement, Julia Makinde, Kristin Ladell, Katherine K. Matthews, Thomas S. Watkins, Katie Tungatt, Yide Wong, Han Siean Lee, Richard J. Clark, Johanne M. Pentier, Meriem Attaf, Anya Lissina, Ann Ager, Awen Gallimore, Pierre J. Rizkallah, Stephanie Gras, Jamie Rossjohn, Scott R. Burrows, David K. Cole, David A. Price, Andrew K. Sewell

×

LILRB1 polymorphisms influence posttransplant HCMV susceptibility and ligand interactions
Kang Yu, … , Swiss Transplant Cohort Study, Deborah N. Burshtyn
Kang Yu, … , Swiss Transplant Cohort Study, Deborah N. Burshtyn
Published March 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96174.
View: Text | PDF

LILRB1 polymorphisms influence posttransplant HCMV susceptibility and ligand interactions

  • Text
  • PDF
Abstract

UL18 is a human CMV (HCMV) MHC class I (MHCI) homolog that efficiently inhibits leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1)+ NK cells. We found an association of LILRB1 polymorphisms in the regulatory regions and ligand-binding domains with control of HCMV in transplant patients. Naturally occurring LILRB1 variants expressed in model NK cells showed functional differences with UL18 and classical MHCI, but not with HLA-G. The altered functional recognition was recapitulated in binding assays with the binding domains of LILRB1. Each of 4 nonsynonymous substitutions in the first 2 LILRB1 immunoglobulin domains contributed to binding with UL18, classical MHCI, and HLA-G. One of the polymorphisms controlled addition of an N-linked glycan, and that mutation of the glycosylation site altered binding to all ligands tested, including enhancing binding to UL18. Together, these findings indicate that specific LILRB1 alleles that allow for superior immune evasion by HCMV are restricted by mutations that limit LILRB1 expression selectively on NK cells. The polymorphisms also maintained an appropriate interaction with HLA-G, fitting with a principal role of LILRB1 in fetal tolerance.

Authors

Kang Yu, Chelsea L. Davidson, Agnieszka Wójtowicz, Luiz Lisboa, Ting Wang, Adriana M. Airo, Jean Villard, Jeremie Buratto, Tatyana Sandalova, Adnane Achour, Atul Humar, Katia Boggian, Alexia Cusini, Christian van Delden, Adrian Egli, Oriol Manuel, Nicolas Mueller, Pierre-Yves Bochud, Swiss Transplant Cohort Study, Deborah N. Burshtyn

×

Mycobacterial growth inhibition is associated with trained innate immunity
Simone A. Joosten, … , Mihai G. Netea, Tom H.M. Ottenhoff
Simone A. Joosten, … , Mihai G. Netea, Tom H.M. Ottenhoff
Published February 20, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97508.
View: Text | PDF

Mycobacterial growth inhibition is associated with trained innate immunity

  • Text
  • PDF
Abstract

The lack of defined correlates of protection hampers development of vaccines against tuberculosis (TB). In vitro mycobacterial outgrowth assays are thought to better capture the complexity of the human host/Mycobacterium tuberculosis (Mtb) interaction. We used a PBMC-based “mycobacterial-growth-inhibition-assay” (MGIA) to investigate the capacity to control outgrowth of Bacille Calmette-Guérin (BCG). Interestingly, strong control of BCG outgrowth was observed almost exclusively in individuals with recent exposure to Mtb, but not in (long-term) latent TB infection, and only modestly in BCG vaccinees. Mechanistically, control of mycobacterial outgrowth strongly correlated with the presence of a CD14dim monocyte population, but also required the presence of T cells. The nonclassical monocytes produced CXCL10, and CXCR3-receptor blockade inhibited the capacity to control BCG outgrowth. Expression of CXCR3 splice variants was altered in recently Mtb exposed individuals. Cytokines previously associated with trained immunity were detected in MGIA supernatants, and CXCL9, CXCL10, and CXCL11 represent new markers of trained immunity. These data indicate that CXCR3-ligands are associated with trained immunity and critical factors in controlling mycobacterial outgrowth.In conclusion, control of mycobacterial outgrowth early after exposure to Mtb is the result of trained immunity mediated by a CXCL10-producing non-classical CD14dim monocyte subset.

Authors

Simone A. Joosten, Krista E. van Meijgaarden, Sandra M. Arend, Corine Prins, Fredrik Oftung, Gro Ellen Korsvold, Sandra V. Kik, Rob J.W. Arts, Reinout van Crevel, Mihai G. Netea, Tom H.M. Ottenhoff

×

HIV latency is reversed by ACSS2-driven histone crotonylation
Guochun Jiang, … , Joseph K. Wong, Satya Dandekar
Guochun Jiang, … , Joseph K. Wong, Satya Dandekar
Published February 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98071.
View: Text | PDF

HIV latency is reversed by ACSS2-driven histone crotonylation

  • Text
  • PDF
Abstract

Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA–producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation–induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection–induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication.

Authors

Guochun Jiang, Don Nguyen, Nancie M. Archin, Steven A. Yukl, Gema Méndez-Lagares, Yuyang Tang, Maher M. Elsheikh, George R. Thompson III, Dennis J. Hartigan-O’Connor, David M. Margolis, Joseph K. Wong, Satya Dandekar

×

Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection
Carly A. Dillen, … , Emanual Maverakis, Lloyd S. Miller
Carly A. Dillen, … , Emanual Maverakis, Lloyd S. Miller
Published February 5, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96481.
View: Text | PDF

Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection

  • Text
  • PDF
Abstract

The mechanisms that mediate durable protection against Staphylococcus aureus skin reinfections are unclear, as recurrences are common despite high antibody titers and memory T cells. Here, we developed a mouse model of S. aureus skin reinfection to investigate protective memory responses. In contrast with WT mice, IL-1β–deficient mice exhibited poor neutrophil recruitment and bacterial clearance during primary infection that was rescued during secondary S. aureus challenge. The γδ T cells from skin-draining LNs utilized compensatory T cell–intrinsic TLR2/MyD88 signaling to mediate rescue by trafficking and producing TNF and IFN-γ, which restored neutrophil recruitment and promoted bacterial clearance. RNA-sequencing (RNA-seq) of the LNs revealed a clonotypic S. aureus–induced γδ T cell expansion with a complementarity-determining region 3 (CDR3) aa sequence identical to that of invariant Vγ5+ dendritic epidermal T cells. However, this T cell receptor γ (TRG) aa sequence of the dominant CDR3 sequence was generated from multiple gene rearrangements of TRGV5 and TRGV6, indicating clonotypic expansion. TNF- and IFN-γ–producing γδ T cells were also expanded in peripheral blood of IRAK4-deficient humans no longer predisposed to S. aureus skin infections. Thus, clonally expanded γδ T cells represent a mechanism for long-lasting immunity against recurrent S. aureus skin infections.

Authors

Carly A. Dillen, Bret L. Pinsker, Alina I. Marusina, Alexander A. Merleev, Orly N. Farber, Haiyun Liu, Nathan K. Archer, Da B. Lee, Yu Wang, Roger V. Ortines, Steven K. Lee, Mark C. Marchitto, Shuting S. Cai, Alyssa G. Ashbaugh, Larissa S. May, Steven M. Holland, Alexandra F. Freeman, Loren G. Miller, Michael R. Yeaman, Scott I. Simon, Joshua D. Milner, Emanual Maverakis, Lloyd S. Miller

×

A controlled human malaria infection model enabling evaluation of transmission-blocking interventions
Katharine A. Collins, … , Jörg J. Möhrle, James S. McCarthy
Katharine A. Collins, … , Jörg J. Möhrle, James S. McCarthy
Published February 1, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98012.
View: Text | PDF

A controlled human malaria infection model enabling evaluation of transmission-blocking interventions

  • Text
  • PDF
Abstract

BACKGROUND. Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). METHODS. Seventeen healthy malaria-naïve volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary endpoints were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in-vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. RESULTS. Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8/11 (73%) participants evaluated. Compared to untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe — fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase — and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. CONCLUSION. We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naïve volunteers at densities infectious to mosquitoes, thereby demonstrating the potential for evaluating transmission-blocking interventions in this model. TRIAL REGISTRATION. ClinicalTrials.gov NCT02431637 and NCT02431650 FUNDING. Bill & Melinda Gates Foundation

Authors

Katharine A. Collins, Claire Y.T. Wang, Matthew Adams, Hayley Mitchell, Melanie Rampton, Suzanne Elliott, Isaie J. Reuling, Teun Bousema, Robert Sauerwein, Stephan Chalon, Jörg J. Möhrle, James S. McCarthy

×

Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles
Angela Pizzolla, … , Katherine Kedzierska, Linda M. Wakim
Angela Pizzolla, … , Katherine Kedzierska, Linda M. Wakim
Published January 8, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96957.
View: Text | PDF

Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles

  • Text
  • PDF
Abstract

The human lung harbors a large population of resident memory T cells (Trm cells). These cells are perfectly positioned to mediate rapid protection against respiratory pathogens such as influenza virus, a highly contagious respiratory pathogen that continues to be a major public health burden. Animal models show that influenza-specific lung CD8+ Trm cells are indispensable for crossprotection against pulmonary infection with different influenza virus strains. However, it is not known whether influenza-specific CD8+ Trm cells present within the human lung have the same critical role in modulating the course of the disease. Here, we showed that human lung contains a population of CD8+ Trm cells that are highly proliferative and have polyfunctional progeny. We observed that different influenza virus–specific CD8+ T cell specificities differentiated into Trm cells with varying efficiencies and that the size of the influenza-specific CD8+ T cell population persisting in the lung directly correlated with the efficiency of differentiation into Trm cells. To our knowledge, we provide the first ex vivo dissection of paired T cell receptor (TCR) repertoires of human influenza–specific CD8+ Trm cells. Our data reveal diverse TCR profiles within the human lung Trm cells and a high degree of clonal sharing with other CD8+ T cell populations, a feature important for effective T cell function and protection against the generation of viral-escape mutants.

Authors

Angela Pizzolla, Thi H.O. Nguyen, Sneha Sant, Jade Jaffar, Tom Loudovaris, Stuart I. Mannering, Paul G. Thomas, Glen P. Westall, Katherine Kedzierska, Linda M. Wakim

×

siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease
Emily P. Thi, … , Ian MacLachlan, Thomas W. Geisbert
Emily P. Thi, … , Ian MacLachlan, Thomas W. Geisbert
Published November 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI96185.
View: Text | PDF

siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease

  • Text
  • PDF
Abstract

Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein–targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.

Authors

Emily P. Thi, Chad E. Mire, Amy C.H. Lee, Joan B. Geisbert, Raul Ursic-Bedoya, Krystle N. Agans, Marjorie Robbins, Daniel J. Deer, Robert W. Cross, Andrew S. Kondratowicz, Karla A. Fenton, Ian MacLachlan, Thomas W. Geisbert

×

Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria
Shannon I. Ohlemacher, … , Barbara W. Trautner, Jeffrey P. Henderson
Shannon I. Ohlemacher, … , Barbara W. Trautner, Jeffrey P. Henderson
Published September 25, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92464.
View: Text | PDF

Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria

  • Text
  • PDF
Abstract

Escherichia coli and other Enterobacteriaceae are among the most common pathogens of the human urinary tract. Among the genetic gains of function associated with urinary E. coli isolates is the Yersinia high pathogenicity island (HPI), which directs the biosynthesis of yersiniabactin (Ybt), a virulence-associated metallophore. Using a metabolomics approach, we found that E. coli and other Enterobacteriaceae expressing the Yersinia HPI also secrete escherichelin, a second metallophore whose chemical structure matches a known synthetic inhibitor of the virulence-associated pyochelin siderophore system in Pseudomonas aeruginosa. We detected escherichelin during clinical E. coli urinary tract infection (UTI) and experimental human colonization with a commensal, potentially probiotic E. coli bacteriuria strain. Escherichelin production by colonizing enterobacteria may help human hosts resist opportunistic infections by Pseudomonas and other pyochelin-expressing bacteria. This siderophore-based mechanism of microbial antagonism may be one of many elements contributing to the protective effects of the human microbiome. Future UTI-preventive probiotic strains may benefit by retaining the escherichelin biosynthetic capacity of the Yersinia HPI while eliminating the Ybt biosynthetic capacity.

Authors

Shannon I. Ohlemacher, Daryl E. Giblin, D. André d’Avignon, Ann E. Stapleton, Barbara W. Trautner, Jeffrey P. Henderson

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 12
  • 13
  • →

No posts were found with this tag.

Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts