Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF Adobe pdf file icon
  • Download citation information
  • Send a letter
  • License information
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
Advertisement

In-Press Preview Research ArticleOncologyTherapeutics Free access | 10.1172/JCI98727

Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer

Yunhua Liu, Hanchen Xu, Kevin Van der Jeught, Yujing Li, Sheng Liu, Lu Zhang, Yuanzhang Fang, Xinna Zhang, Milan Rodovich, Bryan P. Schneider, Xiaoming He, Cheng Huang, Chi Zhang, Jun Wan, Guang Ji, and Xiongbin Lu

Find articles by Liu, Y. in: JCI | PubMed | Google Scholar

Find articles by Xu, H. in: JCI | PubMed | Google Scholar

Find articles by Jeught, K. in: JCI | PubMed | Google Scholar

Find articles by Li, Y. in: JCI | PubMed | Google Scholar

Find articles by Liu, S. in: JCI | PubMed | Google Scholar

Find articles by Zhang, L. in: JCI | PubMed | Google Scholar

Find articles by Fang, Y. in: JCI | PubMed | Google Scholar

Find articles by Zhang, X. in: JCI | PubMed | Google Scholar

Find articles by Rodovich, M. in: JCI | PubMed | Google Scholar

Find articles by Schneider, B. in: JCI | PubMed | Google Scholar

Find articles by He, X. in: JCI | PubMed | Google Scholar

Find articles by Huang, C. in: JCI | PubMed | Google Scholar

Find articles by Zhang, C. in: JCI | PubMed | Google Scholar

Find articles by Wan, J. in: JCI | PubMed | Google Scholar

Find articles by Ji, G. in: JCI | PubMed | Google Scholar

Find articles by Lu, X. in: JCI | PubMed | Google Scholar

First published April 12, 2018 - More info

J Clin Invest. https://doi.org/10.1172/JCI98727.
Copyright © 2018, American Society for Clinical Investigation

First published April 12, 2018
Abstract

Synthetic lethality-based strategy has been developed to identify therapeutic targets in cancer harboring tumor suppressor gene mutations, as exemplified by the effectiveness of PARP inhibitors in BRCA1/2-mutated tumors. However, many synthetic lethal interactors are less reliable due to the fact that such genes usually do not perform fundamental or indispensable functions in the cell. Here we developed an approach to identify the “essential lethality” arose from these mutated/deleted essential genes, which are largely tolerated in cancer cells due to genetic redundancy. We uncovered the cohesion subunit SA1 as a putative synthetic-essential target in cancers carrying inactivating mutations of its paralog, SA2. In SA2-deficient Ewing sarcoma and bladder cancer, further depletion of SA1 profoundly and specifically suppressed cancer cell proliferation, survival and tumorigenic potential. Mechanistically, inhibition of SA1 in the SA2-mutated cells led to premature chromatid separation, dramatic extension of mitotic duration, and consequently lethal failure of cell division. More importantly, depletion of SA1 rendered those SA2-mutated cells more susceptible to DNA damage, especially double-strand breaks (DSBs), due to reduced functionality of DNA repair. Furthermore, inhibition of SA1 sensitized the SA2-deficient cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with SA2-deficient tumors.

Version history
  • Version 1 (April 12, 2018): In-Press Preview

Article tools

  • View PDF Adobe pdf file icon
  • Download citation information
  • Send a letter
  • License information
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts