Megalencephaly syndromes and activating mutations in the PI3K‐AKT pathway: MPPH and MCAP

GM Mirzaa, JB RIVIÈRE… - American Journal of …, 2013 - Wiley Online Library
GM Mirzaa, JB RIVIÈRE, WB Dobyns
American Journal of Medical Genetics Part C: Seminars in Medical …, 2013Wiley Online Library
The megalencephaly‐polymicrogyria‐polydactyly‐hydrocephalus (MPPH) and
megalencephaly‐capillary malformation (MCAP) syndromes are highly recognizable and
partly overlapping disorders of brain overgrowth (megalencephaly). Both syndromes are
characterized by congenital or early postnatal megalencephaly, with a high risk for
progressive ventriculomegaly leading to hydrocephalus and cerebellar tonsillar ectopia
leading to Chiari malformation, and cortical brain abnormalities, specifically polymicrogyria …
Abstract
The megalencephaly‐polymicrogyria‐polydactyly‐hydrocephalus (MPPH) and megalencephaly‐capillary malformation (MCAP) syndromes are highly recognizable and partly overlapping disorders of brain overgrowth (megalencephaly). Both syndromes are characterized by congenital or early postnatal megalencephaly, with a high risk for progressive ventriculomegaly leading to hydrocephalus and cerebellar tonsillar ectopia leading to Chiari malformation, and cortical brain abnormalities, specifically polymicrogyria. MCAP is further characterized by distinct cutaneous capillary malformations, finger or toe syndactyly, postaxial polydactyly, variable connective tissue dysplasia and mild focal or segmental body overgrowth, among other features. MPPH, on the other hand, lacks consistent vascular or somatic manifestations besides postaxial polydactyly in almost half of reported individuals. We identified de novo germline mutations in PIK3R2 and AKT3 in individuals with MPPH, and both postzygotic, mosaic and rare germline mutations in PIK3CA in individuals with MCAP. PIK3R2, AKT3, and PIK3CA are members of the critical phosphatidylinositol‐3‐kinase (PI3K)‐vakt murine thymoma viral oncogene homolog (AKT) pathway that is well implicated in cell growth, proliferation, survival, apoptosis, among other diverse cellular functions. The identified mutations in these three genes have been shown to lead to gain of function and activation of the PI3K‐AKT pathway. Germline and postzygotic mutations of PIK3CA and other PI3K‐AKT‐mTOR pathway genes have also been identified in several other overgrowth syndromes, highlighting the key role of this signaling pathway in normal development and pathophysiology of a large group of congenital anomalies. © 2013 Wiley Periodicals, Inc.
Wiley Online Library