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Supplemental Methods 

RNA sequencing and raw data processing 

We generated 100 RNA-seq libraries encompassing pairs of baseline and Mtb-challenged 

samples for 16 control (HC), 14 PrEP and 20 PLWH subjects. Indexed libraries were combined 

in four to a maximum of 12 libraries per pool, with library pair per subject on the same pool, and 

sequenced as 100 bp single-end reads with an expected throughput of 25 million reads per 

library. Raw fastq files were quality-checked with FastQC (v0.11.8) (1), RSeQC (v2.6.1) (2), and 

subjected to trimming with cutadapt (v2.6) (3) to remove leftover adaptors and low-quality bases 

(≤ 20 Phred score) allowing for a maximum read size of 99bp and a minimum of 75bp. 

Sequences were then aligned to the human reference genome GRCh38.p13 (ENSEMBL v99) (4)  

with STAR (v2.7.3a) (5). Aligned BAM files were input to Salmon version 1.1.0 (6) for 

expression quantification. 

 

RNA expression matrix and gene filtering 

Text files containing estimated counts and transcript per million (TPM) values for 60,676 

annotated features, for each subject, were used to create a gene level expression matrix in R 

(v3.6.1) (7) using tximport (v1.12.3) (8) and biomaRt (2.40.5) (9). We adjusted the estimated 

counts by gene length and abundance (TPM) employing tximport’s method “lengthScaledTPM” 

as discussed by Love et al. (10). Next, we filtered out genes with estimated counts ≤ 10 in more 

than 70 libraries and ran edgeR (11) function “calcNormFactors” to generate scaling 

normalization factors with the TMM method (12). Downstream analyses were focused on 

protein-coding genes with ≥ 100 estimated counts in at least 11 HC or 10 PrEP or 14 PLWH 

libraries, resulting in 10,362 genes for differential gene expression analyses. The gene matrix 

limited to the testable genes and the TMM scaling factors were input in limma (13) voom (14) 

(v3.40.6) to create log2-CPM normalized expression matrices and associated weights. 

 

ATACseq and ChIPseq data processing 

We profiled chromatin accessibility and H3K27 acetylation for non-stimulated and Mtb 

challenged AMs from 44 subjects and 24 subjects, respectively. Libraries were sequenced as 

100bp paired end reads for ATACseq and 100bp single end reads for ChIPseq. Nextera adaptors 
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and low quality reads were removed with TrimGalore v0.6.5 (3). Reads were then aligned to 

both human (hg38) and Mtb (H37Rv) genomes using BWA v0.7.17 default parameters (15). 

PICARD v2.18.9 was used to mark duplicates and to assess the fragment length distribution. 

Reads aligning to the mitochondrial genome were removed with samtools v1.9 (16). Next, 

alignmentSieve v3.3.2 was used to: (i) select unique paired-end reads (ATACseq) or unique 

single end reads (ChIPseq) using the --samFlagExclude 1804 and --samFlagExclude 1796 flags, 

respectively; (ii) remove ENCODE hg38 blacklisted regions (17); and (iii) to extract fragments 

between 40 – 2000bp in length (18). After quality control with MultiQC v1.8 (19), ATACseq 

libraries from two subjects yielded less than 20 million unique reads, and one library deviated 

from the periodic nucleosome pattern for ATACseq. Both the non-stimulated and Mtb 

challenged libraries of subjects failing QC were removed from further analysis. 

 

Peak annotation 

We integrated two approaches to annotate targeted genes for the 53,040 ATACseq tested peaks 

and 42,595 H3K27ac regions from ChIPseq. First, we assigned peaks based on distance < 5kb 

from a gene transcriptional start site (TSS) using ChIPSeeker v1.24 (20). Next, we intersected 

our peak set with the GeneHancer 2017 dataset using mergeByOverlaps from IRange package 

v2.22.2 (21, 22). GeneHancer includes a collection of regulatory regions assigned to genes based 

on the integration of multiple genome-wide regulatory databases (21). By combining the TSS 

and GeneHancer approaches ~80% of the tested peaks were assigned to at least one gene (Figure 

S5).  

 

Chromatin accessibility and H3K27ac filtering, and library normalization 

We performed a count-based quantification of accessible chromatin and H3K27 acetylation as 

shown in (23). Briefly, for each library MACS2 v2.2.6 callpeak was used with --call-summits in 

BAMPE mode (ATACseq) or with --shift -37 and --extsize 73 flags (ChIPseq) to identify regions 

of open chromatin or H3K27 acetylation. Next, the summit of each peak was extended 250bp in 

both directions resulting in fixed-width peaks of exactly 501bp. We merged fixed-width peaks 

overlapping in at least two samples with bedtools v2.26 (24). By restraining the overlap of 

accessible chromatin between samples to fixed-width peaks we avoid merging multiple 
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independent regions into a single large peak.  We identified 116,547 regions of accessible 

chromatin and 120,833 of H3K27 acetylation present in at least two libraries of each approach, 

respectively. Next, for each library, featureCounts v1.6.3 was used to count the number of 

unique fragments (ATACseq) or unique reads (ChIP) overlapping the targeted regions  (25). A 

matrix containing the individual counts for each approach was exported to R. Next, low count 

peaks were removed with edgeR’s v3.30.3 filterByExpr using 25 counts as cut off and the 

quantification matrices were normalized with the upperquartile method implemented on 

calcNormFactors (11). Counts were then transformed to log2 count per million (CPM) using 

limma’s v3.44.3 voom and the resulting matrix was used for downstream analysis (13, 14) . 

 

Linear models   

Differences in chromatin accessibility, H3K27 acetylation and transcriptomic between non-

stimulated and Mtb challenged AMs were analysed in paired designs. To create the models we 

employed the function model.matrix from stats package (v4.0.2) using the factors: sample group 

(HC, PrEP and PLWH), Mtb status (baseline and Mtb challenge) and subject IDs (to enable 

paired design models) as denoted by the following equation: 
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Log2(CPM) represents the depth-normalized log-quantifications with f indicating each gene or 

peak tested. βο is the intercept term, representing log-quantification for an arbitrary non-

challenged library acting as reference. The term βi represents the individual-wise difference 

between the non-challenged sample from the i-th individual and the reference sample. χi is thus a 

dummy variable marking the identity of the (n-1) individuals in the dataset, excluding the 

reference. The following three terms in the equation capture the group-specific Mtb challenge 

effects nested within each group. The β value for each of these terms corresponds to the logFC 

for the Mtb challenge per group after accounting for the inter-individual variance at the baseline 

present in our datasets. For ATAC-seq we included two additional standardized technical 

covariates in the linear model: the total number of unique reads per library and Bioanalyser 

average fragment length. 
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Differential gene expression, chromatin accessibility and H3K27 acetylation in response to Mtb.  

Differences in RNA expression, chromatin accessibility and H3K27 acetylation between non-

stimulated and Mtb challenged AMs were tested in parallel with limma. After defining the linear 

models, we used makeContrasts to guide the calculation of i) group-specific Mtb effects and ii) 

differential Mtb responses between groups (for RNA-seq only). For ii, a) ( . ) ( . )PLWH Mtb HC Mtb   

was the difference in the response to Mtb of PLWH minus HC, b) ( . ) ( . )PrEP Mtb HC Mtb  the 

response difference of PrEP minus HC and c) ( . ) ( . )PLWH Mtb PrEP Mtb   the difference between 

PLWH minus PrEP. Of note, for ATACseq, we removed flowcell batch effects with ComBat as 

the paired nature of our approach prevented the inclusion of this covariate in a linear model (26, 

27). We then applied voomMod from cbcbSEQ to recalculate sample weights after batch 

correction. Next, we fitted the linear models with limma’s function lmFit, derived coefficients 

for the contrasts defined via makeContrasts with ebayes (13) and extracted results with topTable. 

For ATAC and ChIP-seq we estimated false discovery rate (FDR) with the qvalue package 

v2.20.0 and considered peaks as significant if FDR < 0.05 and absolute log fold-change (logFC) 

> 0.2. For RNA-seq we employed the FDR procedure implemented in stageR v 1.6.0  (28) and 

considered genes as differentially expressed if absolute logFC ≥ 0.2 and stageR p-val (stgr.p) ≤ 

0.05. 

 

Gene enrichment analysis 

Pathways and gene ontology (GO) enrichment analysis were performed with clusterProfiler 

package version 3.16.0 and ReactomePA version 1.32.0, using differentially expressed genes 

(DEGs), genes assigned to DOCs or differentially acetylated (DAc) regions. Three different 

databases and functions were used for the enrichment analysis, KEGG was tested with 

enrichKEGG function, Reactome with enrichPathway and GO biological process was tested via 

enrichGO (29). GO terms and pathways that had less than five assigned genes were excluded. 

Next, we merged the results from the three approaches and used the Benjamini-Hochberg’s 

method to estimate the FDR. For DEGs enrichment we used FDR ≤ 0.1 while the cutoff for 

ATAC and ChIP-seq was FDR ≤ 0.05. 

 

Data visualization 
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To visualize region of accessible chromatin as genomic tracks we applied a scaling factor based 

on edgeR’s upperquartile normalization method. Of note, as the ATACseq and ChIPseq 

quantifications considered only fragments/reads in peaks (FrIP), normalizing genomic tracks by 

total library depth does not correspond to the quantification analysed by the linear models. To 

address that, a scaling factor per sample was calculated for genomic tracks as the reciprocal of 

( )
1000000

Upperquartile norm x Total FrIP
. DeepTool’s bamCoverage was used to produce scaled 

BigWig and bedGraphs from analysed BAM files (30). We used SparK to calculate the mean 

coverage and standard deviation per base-pair per group for the genomic track plots (31). 

Volcano and rankPlots were produced by adapting tools from the MAGeCKFlute package (32). 

For the boxplots we used the residual log2CPM after regressing out covariates included in the 

linear models with removeBatchEffect from limma (13). Density, Manhattan, bar and dot plots 

were produced using ggplot2 (33). 

 

Motif enrichment and footprint analysis 

The findMotifsGenome function (HOMER v4.11) was used to assess enrichment of TF motifs in 

DOCs and DAc regions versus all other tested peaks as background (34). We used HINT-ATAC 

from RGT v0.13.0 to identify TF footprints and to estimate TF activity over footprints located in 

DOCs and DAc regions (35). The analysis for differential TF activity over footprint compared 

the average depth of footprints encompassing motifs of a given TF between paired non-

stimulated and Mtb challenged AM. This approach produced an activity score per TF with a 

corresponding p value for each subject t (35). TF containing an average of less than 50 footprints 

across samples were excluded from the analysis. We used a meta-analysis to combine p values 

from each paired comparison using the sum of Z Stouffer's method from metap v1.4 package and 

applied a q-value FDR correction over meta-analysed p values. TF with FDR < 0.05 and activity 

score > 0.005. We used a hypergeometric test to estimate the enrichment of IRF9 and ZNF684 

active footprints in the TSS of DEGs and GO/Pathway analysis. 
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Supplemental Figure 1. mRNA profile in response to Mtb. 

(A) Volcano plots for healthy controls (HC), subjects on pre-exposure prophylaxis (PrEP), and 
persons living with HIV receiving antiretroviral treatment (PLWH). Differentially expressed 
genes (DEG) in response to Mtb are displayed as function of log2FC (x-axis) and negative log10 
unadjusted P-value (y-axis). Each dot corresponds to a single gene, vertical dashed lines indicate 
the logFC -0.2 and 0.2 thresholds. Red and blue dots represent genes significant at stageR FDR ≤ 
5% that were, respectively, up- or down-regulated. Grey dots are genes that did not meet the 
log2FC thresholds (inside dashed lines) or that were not significantly differentially expressed 
(below coloured dots). Genes identified by symbols were significant DE for the HC response to 
Mtb, were significant for the PLWH vs HC differential gene response (panel C, middle), were in 
significant GO-terms/pathway for the PLWH vs HC contrast, and had significant DOCs. These 
genes are prototypical examples for the diminished response by alveolar macrophages (AM) 
from PLWH to Mtb. (B) Scatterplots for log2FC from Mtb challenge effect. log2FC for two 
groups are plotted against each other with the group on the x-axis considered the reference 
group. Grey dots represent the union of DEG from both groups. Top panel coloured dots indicate 
DEGs for the y-axis group (counts for DEG y-axis group are shown). Pearson correlations (R 
value indicated) were calculated based on the coloured dots irrespective if the corresponding 
gene in the x-axis group reached significance for DEG. Bottom panels contain the same data and 
order as the top ones, however coloured dots now represent DEGs for the x-axis group. As 
above, correlations were calculated for coloured log2FC pairings. These plots illustrate the 
overall blunted transcriptional response to Mtb by AM from PLWH and PrEP subjects. (C) 
Volcano plots for Mtb response differences between groups (PrEP vs HC; PLWH vs HC; PLWH 
vs PrEP). Purple dots represent significant genes with diminished log2FC (lower response) for 
PLWH or PrEP in contrast to HC subjects. Yellow dots represent significant genes with 
increased log2FC (higher response) for the non-reference groups. Grey dots depict non-
significant genes for the response differences presented. Annotated genes are the same as 
described in panel A. (D) Genes differentially triggered between groups.  As in panel B, grey 
dots represent the union of DEG from both groups. Coloured dots indicate DEG detected by the 
interaction terms for the groups indicated on the x and y-axes. The counts of DEG for the group 
contrasts is indicated on top of each panel. The x-axis depicts the Mtb effect (log2FC) for the 
indicated reference group while the y-axis shows the log2FC of the Mtb effect for the contrasted 
group. The correlations show that the majority of PLWH vs HC and PrEP vs HC DE genes were 
more strongly induced in HC subjects. 
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Supplemental Figure 2. Scatterplots contrasting baseline mean log2 expression between 
groups. 
Baseline analysis was done for non-challenged libraries of phenotypic groups adjusting on the 
covariates: sex, age, smoking status (cigarette or cannabis), sequencing batch and date of BAL 
sampling. For these plots, depth normalized expression values were adjusted by regressing out 
the effect of covariates listed. Baseline gene expression values for the HC group are plotted on 
the x-axes while corresponding gene expression levels for the PLWH and PrEP groups are 
plotted on the y-axes. Grey dots represent the mean expression for all testable genes. Light blue 
dots depict 134 genes reported with lower expression induction in PLWH contrasted with HC 
after Mtb challenge (Figure 2A, first column). Likewise, dark blue dots represent 148 genes with 
reduced response to Mtb for PrEP in comparison to HC (Figure 2A, second column). Pearson 
correlations (R value indicated) were calculated based on the coloured dots. The plots indicate 
very similar baseline gene expression profiles of groups in absence of Mtb challenge. 
 

 

 

 

 



9   
 

 

 
Supplemental Figure 3. Mtb-triggered secretion of seven cytokines by AM cells.  
After performing the challenge of AM with Mtb for RNA-seq, we kept the 20 hrs supernatants 
for all 100 samples (50 pairs of challenged and non-challenged). Estimates for levels of secreted 
cytokines were obtained with Milliplex Map (EMD Millipore, St. Charles, MO, USA) multiplex 
magnetic bead-based antibody detection kits and the MAGPIX platform (Luminex). 
Concentration values for each sample were converted to log2 scale and the pair-wise log2 fold 
change (log2FC) was derived for each sample. We assessed group differences using standard 
linear regression. Box-plots represent log2FC for each subject on the y-axis, while x-axes display 
group assignments. ANOVA results for each cytokine are shown in the boxes below the plots. 
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Straight lines on top display the significance of Mtb-triggered cytokine secretion for PrEP or 
PLWH AM against AM from HC subjects. Blue, green and red boxes represent HC, PrEP and 
PLWH groups respectively. 
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Supplemental Tables 

Supplemental Table 1. Summary statistics for study subjects. 

Covariates 
HC 

(n=16) 
PrEP 
(n=14) 

PLWH 
(n=20) 

Sex (n, %)       
Male 11 (69%) 14 (100%) 19 (95%) 
Female 5 (31%) 0 1 (1%) 

Age       
Mean (SD) 40.56 (11.64) 36.86 (12.18) 52.85 (7.68) 
Median 40 36 56 
Range 25 - 59 25 - 65 33 - 62 
IQR 19.5 11.25 8.25 

Ethnicity       
Caucasian 15 (94%) 11 (79%) 20 (100%) 
Asian 1 (6%) 1 (7%) 0 
Hispanic 0 1 (7%) 0 
North African 0 1 (7%) 0 

Smoker or recreational cannabis (n, %)       
Yes 4 (25%) 7 (50%) 12 (60%) 
No 12 (75%) 7 (50%) 8 (40%) 

CD4 count (cells/mm3)       

Mean (SD) 
936.8 

(337.44) 907 (303.55) 
690.9 

(274.57) 
Median 947 904 619.5 
Range 439 - 1536 208 - 1454 269 - 1267 
IQR 593 231.75 431.75 

 

 

 

 

Supplemental Table 2, entitled “Differential gene expression testing results”, is available as 
a separated excel file.
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Supplemental Table 3. Differential gene expression and term enrichment test summary. 

Test Contrast DEGs 
# Genes 

FDR ≤ 0.05 
% Genes in 

combined-termsA 
# combined-terms 

FDR ≤ 0.05B 

KEGG Reactome GO BP 

FDR 5% Tested FDR 5% Tested FDR 5% Tested 

Mtb 
challenge 

effect 

HC + Mtb vs HC 

Combined 1434 76.56 1445 77 219 209 477 1159 2885 

Up-regulated 942 81.1 1452 83 168 223 373 1146 2361 

Down-regulated 492 67.88 90 7 48 7 68 76 989 

PLWH + Mtb vs PLWH 

Combined 679 74.22 845 59 132 82 191 704 1776 

Up-regulated 461 80.91 851 57 99 64 132 730 1446 

Down-regulated 218 60.09 16 0 8 2 20 14 390 

PrEP + Mtb vs PrEP 

Combined 255 68.23 254 25 32 17 48 212 623 

Up-regulated 203 72.41 286 26 29 17 32 243 515 

Down-regulated 52 51.92 17 1 1 1 1 15 19 

Mtb response 
differences 

PLWH vs HC 

Combined 156 71.79 262 29 33 28 36 205 355 

Higher responseC 22 50 0 0 0 0 0 0 0 

Lower responseD 134 75.37 261 31 33 28 36 205 355 

PrEP vs HC 

Combined 205 70.24 373 30 41 30 41 313 573 

Higher response 57 56.14 6 0 0 0 0 6 6 

Lower response 148 71 363 29 34 30 34 304 434 

PLWH vs PrEP 

Combined 40 25 0 0 0 0 0 0 0 

Higher response 23 26.08 5 0 0 0 0 5 5 

Lower response 17 23.52 0 0 0 0 0 0 0 
A To derive gene percentage in significant GO terms/pathways, we considered the results from "Combined DEGs" enrichment testing. 

B Only terms with at least 5 assigned genes were considered. 

C,D Refers to positive and negative log2FC results, respectively, from each interaction test. 

 

 

Supplemental Table 4, entitled “Differential gene expression results subset for all genes significant in interaction terms”, is 
available as a separated excel file.
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Supplemental Table 5. Listing of 40 differentially expressed genes for the contrasts Mtb challenge response in PLWH vs PrEP. 

gene_ID log2FC_HC.Mtb log2FC_PLWH.Mtb log2FC_PrEP.Mtb log2FC_PLWH.x.PrEP.Mtb stgr.pval_PLWH.x.PrEP.Mtb 
ENSG00000151065_DCP1B -0.0297385 -0.2131193 0.105109 -0.3182283 0.000746622 
ENSG00000090659_CD209 0.399909624 -0.055992475 0.636002069 -0.691994543 0.001275205 
ENSG00000169914_OTUD3 0.100345334 0.383729024 -0.366055307 0.74978433 0.001604151 
ENSG00000134028_ADAMDEC1 -0.08724319 -0.407451817 0.013367624 -0.420819442 0.002051195 
ENSG00000099814_CEP170B 0.161882237 0.296493444 -0.034829235 0.331322679 0.00250621 
ENSG00000165474_GJB2 0.11323178 0.492506382 -0.040968291 0.533474674 0.002978432 
ENSG00000181409_AATK -0.250470465 0.262928245 -0.388665432 0.651593677 0.003842469 
ENSG00000164970_FAM219A 0.150372282 0.252021393 0.00563563 0.246385762 0.004020677 
ENSG00000080573_COL5A3 0.054225795 0.361640229 -0.109644228 0.471284457 0.004116781 
ENSG00000100575_TIMM9 -0.078791616 -0.23261684 0.190858244 -0.423475084 0.004161273 
ENSG00000169372_CRADD 0.090868434 0.312550005 -0.000531985 0.31308199 0.006435933 
ENSG00000109911_ELP4 -0.087075207 -0.372950471 -0.006755399 -0.366195072 0.008842803 
ENSG00000198853_RUSC2 0.148752775 0.219624982 -0.01036035 0.229985332 0.010720881 
ENSG00000276085_CCL3L3 1.349552792 1.838615114 0.568556344 1.270058769 0.010784191 
ENSG00000116017_ARID3A 0.001652497 0.2709595 -0.08700081 0.3579603 0.0121509 
ENSG00000169908_TM4SF1 0.522607122 0.784147053 0.112638217 0.671508836 0.01314304 
ENSG00000130749_ZC3H4 0.124040059 -0.074926932 0.201265596 -0.276192528 0.013997389 
ENSG00000213762_ZNF134 -0.165176365 -0.25222791 0.114434031 -0.366661941 0.014541229 
ENSG00000153395_LPCAT1 -0.117304166 0.032786337 -0.20719563 0.239981967 0.016228528 
ENSG00000155016_CYP2U1 -0.364015213 -0.469287971 -0.017903114 -0.451384857 0.020733113 
ENSG00000125657_TNFSF9 0.167324937 0.464526467 0.118153763 0.346372704 0.020769268 
ENSG00000258227_CLEC5A -0.43931682 -0.720769374 -0.296489123 -0.424280252 0.020852452 
ENSG00000204472_AIF1 -0.152933816 -0.26461196 -0.003301537 -0.261310423 0.023518391 
ENSG00000135525_MAP7 0.17936453 0.398728233 0.052592309 0.346135924 0.025665002 
ENSG00000174945_AMZ1 -0.081063766 0.272892048 -0.025987325 0.298879373 0.026709912 
ENSG00000178385_PLEKHM3 0.231095435 0.223904251 -0.059670061 0.283574311 0.031884813 
ENSG00000175592_FOSL1 0.371820009 0.61401958 0.186402862 0.427616718 0.032638114 
ENSG00000147650_LRP12 0.19993291 0.278175504 -0.06188825 0.340063754 0.033767647 
ENSG00000136044_APPL2 -0.155729182 -0.27661718 0.025124669 -0.301741849 0.034031608 
ENSG00000096070_BRPF3 -0.002116972 0.2006202 -0.01217041 0.2127906 0.03444748 
ENSG00000143382_ADAMTSL4 0.164140239 -0.039382159 0.235020213 -0.274402372 0.035210832 
ENSG00000124882_EREG 0.461644342 0.752636844 0.058858299 0.693778545 0.038062197 
ENSG00000149591_TAGLN 0.253166034 -0.006543408 0.245722247 -0.252265654 0.039225944 
ENSG00000140694_PARN -0.043986145 -0.263740111 -0.014815284 -0.248924827 0.039320844 
ENSG00000139725_RHOF 0.034960015 0.249947015 0.015588476 0.234358538 0.041604923 
ENSG00000255833_TIFAB -0.745451313 -0.646911336 0.210915331 -0.857826667 0.041924324 
ENSG00000111145_ELK3 -0.223104036 -0.2777801 0.032460383 -0.310240483 0.043315909 
ENSG00000132002_DNAJB1 0.170473231 0.245512063 -0.021413914 0.266925977 0.044270801 
ENSG00000182134_TDRKH -0.283150058 -0.260641339 0.028269881 -0.28891122 0.048552949 
ENSG00000222009_BTBD19 0.168243536 0.267965297 0.020564661 0.247400636 0.048664156 

 

log2FC_{contrast} represents the average log2 fold change for a contrast at hand. For instance, “log2FC_PLWH.x.PrEP.Mtb” is the average 
response difference between PLWH Mtb response against PrEP Mtb response (interaction test). 
stgr.pval_{contrast} is the stageR adjusted-p values (FDR).  
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Supplemental Table 6. ATAC-seq and H3K27ac differential accessibility/mark and term enrichment test summary. 

Approach Contrast Peaks 
# Regions 
FDR < 0.05 

# genes 
KEGG Reactome GO BP 

FDR 5% Tested FDR 5% Tested FDR 5% Tested 

ATACseq HC + Mtb vs HC 

Combined 12369 16085 63 323 41 1395 620 6348 

Open 8389 11562 42 316 42 1338 461 6001 

Close 3971 6430 3 309 5 1047 23 4549 

H3K27ac 

HC + Mtb vs HC 
More acetylated 1293 5046 51 294 35 961 532 4367 

Less acetylated 1218 3957 0 303 2 1021 39 4655 

PLWH + Mtb vs PLWH 
More acetylated 389 1735 10 294 25 961 84 4367 

Less acetylated 56 238 . . . . . . 

PrEP + Mtb vs PrEP 
More acetylated 98 497 8 294 15 961 134 4367 

Less acetylated 0 0 . . . . . . 
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Supplemental Table 7, entitled “Differential chromatin accessibility testing results”, is available as a separated excel file. 

Supplemental Table 8, entitled “Differential H3K27ac mark testing results”, is available as a separated excel file. 

 

 

Supplemental Table 9. Enrichment of IRF9 and ZNF684 footprints in the promoter of DEGs. 

  DEG in HC + Mtb    

    Yes No Total   

IRF9 active footprint in the gene TSS 
Yes 65 70 135 

p = 7.9 x 10-23 
No 1369 8858 10227 

ZNF684 active footprint in the gene TSS 
Yes 258 1047 1305 

p = 5.3 x 10-11 
No 1176 7881 9057 

 Total 1434 8928 10362  

 

 

Supplemental Table 10, entitled “Expressed genes with IRF9 footprint at the transcription starting site”, is available as a 
separated excel file. 
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